
iOS 6 Kernel Security: 

A Hacker’s Guide 

by Mark Dowd and Tarjei Mandt 

mdowd@azimuthsecurity.com 

tm@azimuthsecurity.com 

mailto:mdowd@azimuthsecurity.com


Introduction 

 iOS 6 recently released 

 Large focus on security improvements – 

particularly kernel hardening 

 Primarily targets strategies employed in 

“jailbreaks” 

 This talk provides an overview of the new 

kernel-based mitigations 

 Explores new techniques for attacking iOS 6 



Topics Covered 

 Part 1 – Defense 

– Heap Hardening Strategies 

– Stack Cookies 

– Information Leaking Mitigations 

– Address Space Layout Randomization (ASLR) 

– User/Kernel address space hardening 

 Part 2 – Offense 

– Information Leaking 

– Heap Strategies 



Randomization Algorithm 

 First, a word on randomness… 

 Used to derive random numbers for stack 
cookie, heap cookies, kernel map ASLR, and 
pointer obfuscation 

 Random seed generated (or retrieved) during 
boot loading (iBoot) 

 Combined with current time to get random 
value 

 

 



Randomization Algorithm 



Heap Hardening 

 Heap has been hardened to prevent well-

known attack strategies 

 Three mitigations put in place 

– Pointer validation 

– Block poisoning 

– Freelist integrity verification 

 Specific to the zone allocator (zalloc( ), used 

by kalloc( ), MALLOC( ), MALLOC_ZONE( )) 

 

 



Heap Hardening - Recap 

 Quick recap of old exploitation techniques 

required 

– Covered in the past extensively by Stefan Esser, 

Nemo, probably others 

 Zone allocations divided in to fixed-size 

zones (kalloc.8, kalloc.16, ... kalloc.32768) 

– Specialized zones also utilized for specific tasks 

(eg. Pmap_zone, vm_map_copy_zone, etc) 

 Zone allocates more pages on demand 
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Heap Hardening - Recap 

 Zone allocates blocks of pages on demand 

– Divides memory in to element-size blocks 

– All blocks initially added to zone’s free list 

 Zone free list maintained as singly linked list 

– First DWORD of free block overwritten with “next” 

pointer when it is freed 

 Allocations simply remove elements from the 

free list 
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Heap Hardening - Recap 

 Previous exploitation techniques rely on 

overwriting free list pointers in free blocks 

– Future allocation can return arbitrary memory 

block 

 Typical strategy: Add a pointer to sysent 

– Add new system call 

– Invoke new system call  

– Profit 

 

 



Heap Hardening – Pointer Validation 

 Goal: Prevent invalid pointers being entered 

in to kalloc( ) zone’s freelist 

 Additional checks performed on pointers 

passed to zfree( ) 

– Also performed as part of validation on pointers in 

freelist during allocation (zalloc( )) 

 

 



Heap Hardening – Pointer Validation 

 Pointer verified to be in kernel memory (0x80000000 
< ptr < 0xFFFEFFFF) 

 If allows_foreign is set in zone, no more 
validation performed 
– Currently event_zone, 

vm_map_entry_reserved_zone, vm_page_zone 

 If pointer is within kernel image, allow (??) 

 Otherwise, ensure pointer is within 
zone_map 

 

 

 



Heap Hardening – Block Poisoning 

 Goal: Prevent UAF-style attacks 

 Strategy involves filling blocks with sentinel 
value (0xdeadbeef) when being freed 
– Performed by add_to_zone( ) called from zfree( ) 

 Only performed on selected blocks 
– Block sizes smaller than cache line size of 

processor (e.g. 32 bytes on A5/A5X devices) 

– Can override with “-zp”, “-no-zp”, “zp-factor” boot 
parameters 

 

 



Heap Hardening – Freelists 

 Goal: Prevent heap overwrites from being 

exploitable 

 Two random values generated at boot time 

(zone_bootstrap( )) 

– 32-bit cookie for “poisoned blocks” 

– 31-bit cookie for “non-poisoned blocks” 

 Low bit is clear 

 Values serve as validation cookies 

 

 

 

 



Heap Hardening – Freelists 

 Freelist pointers at the top of a free block are 

now validated by zalloc( ) 

– Work performed by alloc_from_zone( ) 

 Encoded next pointer placed at end of block 

– XOR’d with poisoned_cookie or 

nonpoisoned_cookie 
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Heap Hardening – Freelists 

 zalloc( ) ensures next_pointer matches 

encoded pointer at end of block 

– Tries both cookies 

– If poisoned cookie matches, check whole block 

for modification of sentinel (0xdeadbeef) values 

– Cause kernel panic if either check fails 

 Next pointer and cookie replaced by 

0xdeadbeef when allocated 

– Possible information leak protection 

 

 

 



Heap Hardening – Primitives 

 OSUnserializeXML( ) could previously be 

used to perform kernel heap feng shui 

– Technique presented by Stefan Esser in «iOS 

Kernel Heap Armageddon» at SyScan 2012 

 Allowed precise allocation and freeing of 

kalloc zone data 

 Also possible to force persistent allocations 

by wrapping the reference count 

 

 



Heap Hardening - Primitives 

<plist version="1.0"> 

<dict> 

  <key>AAAA</key> 

  <array ID="1" CMT="IsNeverFreedTooManyReferences">...</array> 

  <key>REFS</key> 

<array> 

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/> 

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/> 

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/> 

... 

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/> 

</array> 

</dict> 

</plist> 



Heap Hardening - Primitives 

 Duplicate dictionary keys no longer result in 

freeing of the original key/value 

 Dictionary entries can no longer be pinned to 

memory using multiple references 

 In both cases, the plist dictionary is 

considered invalid 

 

 



Stack Cookies 

 Goal: Prevent stack overflow exploitation 

 Only applied to functions with 
structures/buffers 

 Random value generated during early kernel 
initialization (arm_init( )) 

 24-bit random value  
– 32-bit value really, but 2nd byte zeroed out 

– Presumably string copy prevention 

 



Stack Cookies 

 Generated stack cookie placed directly after 

saved registers at bottom of stack frame 

 Pointer to cookie saved at top of stack frame  

– Or in a register if convenient 

– Space above stack cookie pointer used for called 

functions if necessary 

 

 

 



Stack Cookies 



Stack Cookies 

 Function epilog verifies saved stack cookie 

– Generated value found by following saved pointer 

 Verification failure results in kernel panic 



Information Leaking Mitigations 

 Goals: 

– Prevent disclosure of kernel base 

– Prevent disclosure of kernel heap addresses 

 Strategies: 

– Disables some APIs 

– Obfuscate kernel pointers for some APIs 

– Zero out pointers for others 

 

 

 



Information Leaking Mitigations 

 Previous attacks relied on zone allocator 
status disclosure 
– host_zone_info( ) / mach_zone_info( ) 

– Stefan Esser described using this for heap “feng 
shui” (https://media.blackhat.com/bh-us-
11/Esser/BH_US_11_Esser_Exploiting_The_iOS
_Kernel_Slides.pdf) 

 APIs now require PE_i_can_has_debugger() 
access 
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Information Leaking Mitigations 

 Several APIs disclose kernel object pointers 

– mach_port_kobject( ) 

– mach_port_space_info( ) 

– vm_region_recurse( ) / vm_map_region_recurse( ) 

– vm_map_page_info( ) 

– proc_info ( PROC_PIDREGIONINFO, 
PROC_PIDREGIONPATHINFO, PROC_PIDFDPIPEINFO, 
PROC_PIDFDSOCKETINFO,  
PROC_PIDFILEPORTSOCKETINFO ) 

– fstat( ) (when querying pipes) 

– sysctl( net.inet.*.pcblist ) 

 

 



Information Leaking Mitigations 

 Need these APIs for lots of reasons 

– Often, underlying APIs rather than exposed ones 

listed previously 

 Strategy: Obfuscate pointers 

– Generate 31 bit random value at boot time  

 lowest bit always 1 

– Add random value to real pointer 
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Information Leaking Mitigations 

 Other APIs disclose pointers unnecessarily 

– Zero them out 

 Used to mitigate some leaks via sysctl 

– Notably, known proc structure infoleak 

 



Kernel ASLR 

 Goal: Prevent attacker’s from 

modifying/utilizing data at known (fixed) 

addresses 

 Strategy is two-fold 

– Randomize kernel image base 

– Randomize base of kernel_map (sort of) 

 



Kernel ASLR – Kernel Image 

 Kernel base randomized by boot loader 
(iBoot) 
– Random data generated 

– SHA-1 hash of data taken 

– Byte from SHA-1 hash used to calculate kernel 
“slide” 

 Kernel is rebased using the formula: 
0x01000000 + (slide_byte * 0x00200000) 
– If slide is 0, static offset of 0x21000000 is used 

 



Kernel ASLR – Kernel Image 

 

 

 

 

 

 

 



Kernel ASLR – Kernel Image 

 Calculated value added to kernel preferred 
base later on 

 Result: 
– Kernel can be rebased at 1 of 256 possible 

locations 

– Base addresses are 2MB apart 
 Example: 0x81200000, 0x81400000, … 0xA1000000 

 Adjusted base passed to kernel in boot args 
structure (offset 0x04) 

 



Kernel ASLR – Kernel Map 

 Used for kernel allocations of all types 

– kalloc( ), kernel_memory_allocate( ), etc 

 Spans all of kernel space (0x80000000 -> 

0xFFFEFFFF) 

 Kernel-based maps are submaps of 

kernel_map 

– zone_map, ipc_kernel_map, etc 

 



Kernel ASLR – Kernel Map 

 Strategy involves randomizing the base of 

kernel_map 

– Random 9-bit value generated right after 

kmem_init( ) (which establishes kernel_map) 

– Multiplied by page size 

– Resulting value used as size for initial 

kernel_map allocation 

– 9 bits = 512 different allocation size possibilities 

 

 



Kernel ASLR – Kernel Map 

 Future kernel_map (including submap) 

allocations pushed forward by random 

amount 

– Allocation silently removed after first garbage 

collection (and reused) 

 Behavior can be overridden with “kmapoff” 

boot parameter 

 

 



Kernel ASLR – Kernel Map 

 

 



Kernel Address Space Protection 

 Goal: Prevent NULL/offset-to-NULL 

dereference vulnerabilities 

 Previously, kernel mapped in to user-mode 

address space 

 NULL-dereferences were prevented by 

forcing binaries to have __PAGE_ZERO 

section 

– Does not prevent offset-to-NULL problems 

 

 



Kernel Address Space Protection 

 kernel_task now has its own address space 

while executing 

– Transitioned to with interrupt handlers 

– Switched between during copyin( ) / copyout( ) 

 User-mode pages therefore not accessible 

while executing in kernel mode 

 Impossible to accidentally access them 

 

 



Kernel Address Space Protection 

 

 



Kernel Address Space Protection 

 BUG – iOS 5 and earlier had very poor user/kernel 

validation in copyin( ) / copyout( ) 

– Only validation: usermode pointer < 0x80000000  

– Length not validated 

 Pointer + length can be > 0x80000000 (!) 

– Can potentially read/write to kernel memory  

 Limitation: Device must have > 512M to map 

0x7FFFF000 

– iPad 3 / iPhone 5 

 

 

 

 

 

 

 



Kernel Address Space Protection 

 

 

 



Kernel Address Space Protection 

 iOS 6 added security checks 

– Integer overflow/signedness checks 

– Conservative maximum length 

– Pointer + length < 0x80000000 

 iOS 6 still vulnerable! 

– If copy length <= 0x1000, pointer + length check 

not performed 

– Can read/write to first page of kernel memory 
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Kernel Address Space Protection 

 Is anything in the first page of memory? 

– Initially contains kmap offset allocation, but that is 

removed after first garbage collection 

– Some things allocate to kernel map directly 

 HFS 

 kalloc() blocks of >= 256k 

 Create a pipe, specify buffers > 0x7FFFF000 

 Bonus: If memory is not mapped, kernel will 

not panic (safely return EFAULT) 

 

 

 

 

 



Kernel Address Space Protection 

 Memory is no longer RWX 

– Kernel code cannot be directly patched 

– Heap is non-executable 

– Stack is non-executable 

 

 

 

 



Kernel Attacks: Overview 

 Protections kill most of the known attack 

strategies 

– Syscall table overwrites 

– Patching kernel code 

– Attacking key data structures (randomized 

locations) 

 Need something new! 



Kernel Attacks: Overview 

 Generally, exploit will require information 

leaking followed by corruption 

 Corruption primitives dictate strategy 

– Write in to adjacent buffer (overflow) 

– Write to relative location from buffer 

– Write to arbitrary location 

 Different types of primitives will be 

considered separately 



Kernel Attacks: KASLR 

 Leaking the kernel base is really useful 

 Kext_request( ) allows applications to 

request information about kernel modules 

– Divided into active and passive operations 

 Active operations (load, unload, start, stop, 

etc.) require privileged (root) access 

– Secure kernels (i.e. iOS) remove ability to load 

kernel extensions 



Kernel Attacks: KASLR 

 Passive operations were originally 

unrestricted in < iOS 6 

– Allowed unprivileged users to query kernel and 

module base addresses 

 

 

 

 



Kernel Attacks: KASLR 

 iOS 6 inadvertently removed some limitations 

– Only load address requests disallowed 

 

 

 



Kernel Attacks: KASLR 

 We can use 

kKextRequestPredicateGetLoaded  

– Returns load addresses and mach-o header 

dumps (base64 encoded) 

– Load address / Mach-O segment headers are 

obscured to hide ASLR slide 

– Mach-O section headers are not! 

– Reveals virtual addresses of loaded kernel 

sections 

 



Kernel Attacks: KASLR 

<dict><key>Kext Request Predicate</key><string>Get Loaded Kext Info</string></dict> 

<dict ID="0"><key>__kernel__</key><dict 

ID="1"><key>OSBundleMachOHeaders</key><data 

ID="2">zvrt/gwAAAAJAAAAAgA…AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhQ

CIAAAAAAJgAAABAAAAAwPDIAwEUAAA==</data> 

… 

<key>OSBundleLoadAddress</key><integer size="64" ID="9">0x80001000</integer> 

Request 

Response 

Decoded kernel 

macho header 

Real __text 

section address 



Kernel Attacks: Heap Corruption 

 Standard heap overflow tricks no longer work 

– Overwriting freelist pointer results in validation 

step failing 

 Exploitation requires new strategies 

– Information leak to find heap address/cookies 

– Control structure manipulation 

 Depends on corruption primitives 

 



Kernel Attacks: Heap Overflows 

 Overflowing metadata is useful 

– Various control structures can be targeted instead 

– Requires some heap grooming (may or may not 

be difficult depending on block size) 

 Various heap attacking primitives can be 

combined to gain code execution 

 

 



Kernel Attacks: Heap Overflows 

 Introducing vm_map_copy_t 

 

 



Kernel Attacks: Heap Overflows 

 Kernel buffers allocated by vm_map_copyin() 

if size < 4096 

 Creating them is easy 

– Send messages to a mach port with 

ool_descriptors in them 

– They are persistent until the message is received 

 Corrupting these structures are useful for 

information leaking and exploitation 

 

 

 

 

 



Kernel Attacks: Heap Overflows 

 Primitive 1: Adjacent Disclosure 

– Overwrite size parameter of vm_map_copy_t 

– Receive the message corresponding to the map 

– Returns memory past the end of your allocated 

buffer 

 Bonus: Overwritten size is not used in kfree()  

– No side effects 
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Kernel Attacks: Heap Overflows 

 Primitive 2: Arbitrary Memory Disclosure 

– Overwrite size and pointer of adjacent 

vm_map_copy_t 

– Receive message, read arbitrary memory from 

kernel 

 No side effects 

– Data pointer (cpy_kdata) is never passed to 

kfree() (the vm_map_copy_t is) 

– Leave kalloc_size alone! 

 

 

 



Kernel Attacks: Heap Overflows 

 Primitive 3: Extended Overflow 

– Overwrite kalloc_size with larger value 

– Passed to kfree() – block entered in to wrong 

zone (eg. kalloc.256 instead of kalloc.128) 

– Allocate block from poisoned zone 

– Profit 
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Kernel Attacks: Heap Overflows 

 Primitive 4: Find our own address + Overflow 

– Mix and match primitive 1 and 3 

– Overwrite one whole vm_map_copy_t, changing 

kalloc_size to be suitably large 

– Overflow in to adjacent vm_map_copy_t, partially 

overwriting pointer / length 

– Free second copy (revealing pointers to itself) 

– Free first copy, creating poisoned kalloc block at 

known location 

 

 

 



Kernel Attacks: Heap Overflows 



Kernel Attacks: Heap Overflows 



Conclusion 

 iOS 6 mitigations significantly raise the bar 

– Many of the old tricks don’t work 

– A variety of bugs likely to be (reliably) 

unexploitable now 

 Presented strategies provide useful 

mechanisms for exploiting iOS 6 

 Thanks! 

 

 

 


