
iOS 6 Kernel Security:

A Hacker’s Guide

by Mark Dowd and Tarjei Mandt

mdowd@azimuthsecurity.com

tm@azimuthsecurity.com

mailto:mdowd@azimuthsecurity.com

Introduction

 iOS 6 recently released

 Large focus on security improvements –

particularly kernel hardening

 Primarily targets strategies employed in

“jailbreaks”

 This talk provides an overview of the new

kernel-based mitigations

 Explores new techniques for attacking iOS 6

Topics Covered

 Part 1 – Defense

– Heap Hardening Strategies

– Stack Cookies

– Information Leaking Mitigations

– Address Space Layout Randomization (ASLR)

– User/Kernel address space hardening

 Part 2 – Offense

– Information Leaking

– Heap Strategies

Randomization Algorithm

 First, a word on randomness…

 Used to derive random numbers for stack
cookie, heap cookies, kernel map ASLR, and
pointer obfuscation

 Random seed generated (or retrieved) during
boot loading (iBoot)

 Combined with current time to get random
value

Randomization Algorithm

Heap Hardening

 Heap has been hardened to prevent well-

known attack strategies

 Three mitigations put in place

– Pointer validation

– Block poisoning

– Freelist integrity verification

 Specific to the zone allocator (zalloc(), used

by kalloc(), MALLOC(), MALLOC_ZONE())

Heap Hardening - Recap

 Quick recap of old exploitation techniques

required

– Covered in the past extensively by Stefan Esser,

Nemo, probably others

 Zone allocations divided in to fixed-size

zones (kalloc.8, kalloc.16, ... kalloc.32768)

– Specialized zones also utilized for specific tasks

(eg. Pmap_zone, vm_map_copy_zone, etc)

 Zone allocates more pages on demand

Heap Hardening - Recap

Heap Hardening - Recap

 Zone allocates blocks of pages on demand

– Divides memory in to element-size blocks

– All blocks initially added to zone’s free list

 Zone free list maintained as singly linked list

– First DWORD of free block overwritten with “next”

pointer when it is freed

 Allocations simply remove elements from the

free list

Heap Hardening - Recap

Heap Hardening - Recap

 Previous exploitation techniques rely on

overwriting free list pointers in free blocks

– Future allocation can return arbitrary memory

block

 Typical strategy: Add a pointer to sysent

– Add new system call

– Invoke new system call

– Profit

Heap Hardening – Pointer Validation

 Goal: Prevent invalid pointers being entered

in to kalloc() zone’s freelist

 Additional checks performed on pointers

passed to zfree()

– Also performed as part of validation on pointers in

freelist during allocation (zalloc())

Heap Hardening – Pointer Validation

 Pointer verified to be in kernel memory (0x80000000
< ptr < 0xFFFEFFFF)

 If allows_foreign is set in zone, no more
validation performed
– Currently event_zone,

vm_map_entry_reserved_zone, vm_page_zone

 If pointer is within kernel image, allow (??)

 Otherwise, ensure pointer is within
zone_map

Heap Hardening – Block Poisoning

 Goal: Prevent UAF-style attacks

 Strategy involves filling blocks with sentinel
value (0xdeadbeef) when being freed
– Performed by add_to_zone() called from zfree()

 Only performed on selected blocks
– Block sizes smaller than cache line size of

processor (e.g. 32 bytes on A5/A5X devices)

– Can override with “-zp”, “-no-zp”, “zp-factor” boot
parameters

Heap Hardening – Freelists

 Goal: Prevent heap overwrites from being

exploitable

 Two random values generated at boot time

(zone_bootstrap())

– 32-bit cookie for “poisoned blocks”

– 31-bit cookie for “non-poisoned blocks”

 Low bit is clear

 Values serve as validation cookies

Heap Hardening – Freelists

 Freelist pointers at the top of a free block are

now validated by zalloc()

– Work performed by alloc_from_zone()

 Encoded next pointer placed at end of block

– XOR’d with poisoned_cookie or

nonpoisoned_cookie

Heap Hardening – Freelists

Heap Hardening – Freelists

 zalloc() ensures next_pointer matches

encoded pointer at end of block

– Tries both cookies

– If poisoned cookie matches, check whole block

for modification of sentinel (0xdeadbeef) values

– Cause kernel panic if either check fails

 Next pointer and cookie replaced by

0xdeadbeef when allocated

– Possible information leak protection

Heap Hardening – Primitives

 OSUnserializeXML() could previously be

used to perform kernel heap feng shui

– Technique presented by Stefan Esser in «iOS

Kernel Heap Armageddon» at SyScan 2012

 Allowed precise allocation and freeing of

kalloc zone data

 Also possible to force persistent allocations

by wrapping the reference count

Heap Hardening - Primitives

<plist version="1.0">

<dict>

 <key>AAAA</key>

 <array ID="1" CMT="IsNeverFreedTooManyReferences">...</array>

 <key>REFS</key>

<array>

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/>

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/>

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/>

...

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/>

</array>

</dict>

</plist>

Heap Hardening - Primitives

 Duplicate dictionary keys no longer result in

freeing of the original key/value

 Dictionary entries can no longer be pinned to

memory using multiple references

 In both cases, the plist dictionary is

considered invalid

Stack Cookies

 Goal: Prevent stack overflow exploitation

 Only applied to functions with
structures/buffers

 Random value generated during early kernel
initialization (arm_init())

 24-bit random value
– 32-bit value really, but 2nd byte zeroed out

– Presumably string copy prevention

Stack Cookies

 Generated stack cookie placed directly after

saved registers at bottom of stack frame

 Pointer to cookie saved at top of stack frame

– Or in a register if convenient

– Space above stack cookie pointer used for called

functions if necessary

Stack Cookies

Stack Cookies

 Function epilog verifies saved stack cookie

– Generated value found by following saved pointer

 Verification failure results in kernel panic

Information Leaking Mitigations

 Goals:

– Prevent disclosure of kernel base

– Prevent disclosure of kernel heap addresses

 Strategies:

– Disables some APIs

– Obfuscate kernel pointers for some APIs

– Zero out pointers for others

Information Leaking Mitigations

 Previous attacks relied on zone allocator
status disclosure
– host_zone_info() / mach_zone_info()

– Stefan Esser described using this for heap “feng
shui” (https://media.blackhat.com/bh-us-
11/Esser/BH_US_11_Esser_Exploiting_The_iOS
_Kernel_Slides.pdf)

 APIs now require PE_i_can_has_debugger()
access

https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf

Information Leaking Mitigations

 Several APIs disclose kernel object pointers

– mach_port_kobject()

– mach_port_space_info()

– vm_region_recurse() / vm_map_region_recurse()

– vm_map_page_info()

– proc_info (PROC_PIDREGIONINFO,
PROC_PIDREGIONPATHINFO, PROC_PIDFDPIPEINFO,
PROC_PIDFDSOCKETINFO,
PROC_PIDFILEPORTSOCKETINFO)

– fstat() (when querying pipes)

– sysctl(net.inet.*.pcblist)

Information Leaking Mitigations

 Need these APIs for lots of reasons

– Often, underlying APIs rather than exposed ones

listed previously

 Strategy: Obfuscate pointers

– Generate 31 bit random value at boot time

 lowest bit always 1

– Add random value to real pointer

Information Leaking Mitigations

Information Leaking Mitigations

Information Leaking Mitigations

 Other APIs disclose pointers unnecessarily

– Zero them out

 Used to mitigate some leaks via sysctl

– Notably, known proc structure infoleak

Kernel ASLR

 Goal: Prevent attacker’s from

modifying/utilizing data at known (fixed)

addresses

 Strategy is two-fold

– Randomize kernel image base

– Randomize base of kernel_map (sort of)

Kernel ASLR – Kernel Image

 Kernel base randomized by boot loader
(iBoot)
– Random data generated

– SHA-1 hash of data taken

– Byte from SHA-1 hash used to calculate kernel
“slide”

 Kernel is rebased using the formula:
0x01000000 + (slide_byte * 0x00200000)
– If slide is 0, static offset of 0x21000000 is used

Kernel ASLR – Kernel Image

Kernel ASLR – Kernel Image

 Calculated value added to kernel preferred
base later on

 Result:
– Kernel can be rebased at 1 of 256 possible

locations

– Base addresses are 2MB apart
 Example: 0x81200000, 0x81400000, … 0xA1000000

 Adjusted base passed to kernel in boot args
structure (offset 0x04)

Kernel ASLR – Kernel Map

 Used for kernel allocations of all types

– kalloc(), kernel_memory_allocate(), etc

 Spans all of kernel space (0x80000000 ->

0xFFFEFFFF)

 Kernel-based maps are submaps of

kernel_map

– zone_map, ipc_kernel_map, etc

Kernel ASLR – Kernel Map

 Strategy involves randomizing the base of

kernel_map

– Random 9-bit value generated right after

kmem_init() (which establishes kernel_map)

– Multiplied by page size

– Resulting value used as size for initial

kernel_map allocation

– 9 bits = 512 different allocation size possibilities

Kernel ASLR – Kernel Map

 Future kernel_map (including submap)

allocations pushed forward by random

amount

– Allocation silently removed after first garbage

collection (and reused)

 Behavior can be overridden with “kmapoff”

boot parameter

Kernel ASLR – Kernel Map

Kernel Address Space Protection

 Goal: Prevent NULL/offset-to-NULL

dereference vulnerabilities

 Previously, kernel mapped in to user-mode

address space

 NULL-dereferences were prevented by

forcing binaries to have __PAGE_ZERO

section

– Does not prevent offset-to-NULL problems

Kernel Address Space Protection

 kernel_task now has its own address space

while executing

– Transitioned to with interrupt handlers

– Switched between during copyin() / copyout()

 User-mode pages therefore not accessible

while executing in kernel mode

 Impossible to accidentally access them

Kernel Address Space Protection

Kernel Address Space Protection

 BUG – iOS 5 and earlier had very poor user/kernel

validation in copyin() / copyout()

– Only validation: usermode pointer < 0x80000000

– Length not validated

 Pointer + length can be > 0x80000000 (!)

– Can potentially read/write to kernel memory

 Limitation: Device must have > 512M to map

0x7FFFF000

– iPad 3 / iPhone 5

Kernel Address Space Protection

Kernel Address Space Protection

 iOS 6 added security checks

– Integer overflow/signedness checks

– Conservative maximum length

– Pointer + length < 0x80000000

 iOS 6 still vulnerable!

– If copy length <= 0x1000, pointer + length check

not performed

– Can read/write to first page of kernel memory

Kernel Address Space Protection

Kernel Address Space Protection

 Is anything in the first page of memory?

– Initially contains kmap offset allocation, but that is

removed after first garbage collection

– Some things allocate to kernel map directly

 HFS

 kalloc() blocks of >= 256k

 Create a pipe, specify buffers > 0x7FFFF000

 Bonus: If memory is not mapped, kernel will

not panic (safely return EFAULT)

Kernel Address Space Protection

 Memory is no longer RWX

– Kernel code cannot be directly patched

– Heap is non-executable

– Stack is non-executable

Kernel Attacks: Overview

 Protections kill most of the known attack

strategies

– Syscall table overwrites

– Patching kernel code

– Attacking key data structures (randomized

locations)

 Need something new!

Kernel Attacks: Overview

 Generally, exploit will require information

leaking followed by corruption

 Corruption primitives dictate strategy

– Write in to adjacent buffer (overflow)

– Write to relative location from buffer

– Write to arbitrary location

 Different types of primitives will be

considered separately

Kernel Attacks: KASLR

 Leaking the kernel base is really useful

 Kext_request() allows applications to

request information about kernel modules

– Divided into active and passive operations

 Active operations (load, unload, start, stop,

etc.) require privileged (root) access

– Secure kernels (i.e. iOS) remove ability to load

kernel extensions

Kernel Attacks: KASLR

 Passive operations were originally

unrestricted in < iOS 6

– Allowed unprivileged users to query kernel and

module base addresses

Kernel Attacks: KASLR

 iOS 6 inadvertently removed some limitations

– Only load address requests disallowed

Kernel Attacks: KASLR

 We can use

kKextRequestPredicateGetLoaded

– Returns load addresses and mach-o header

dumps (base64 encoded)

– Load address / Mach-O segment headers are

obscured to hide ASLR slide

– Mach-O section headers are not!

– Reveals virtual addresses of loaded kernel

sections

Kernel Attacks: KASLR

<dict><key>Kext Request Predicate</key><string>Get Loaded Kext Info</string></dict>

<dict ID="0"><key>__kernel__</key><dict

ID="1"><key>OSBundleMachOHeaders</key><data

ID="2">zvrt/gwAAAAJAAAAAgA…AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhQ

CIAAAAAAJgAAABAAAAAwPDIAwEUAAA==</data>

…

<key>OSBundleLoadAddress</key><integer size="64" ID="9">0x80001000</integer>

Request

Response

Decoded kernel

macho header

Real __text

section address

Kernel Attacks: Heap Corruption

 Standard heap overflow tricks no longer work

– Overwriting freelist pointer results in validation

step failing

 Exploitation requires new strategies

– Information leak to find heap address/cookies

– Control structure manipulation

 Depends on corruption primitives

Kernel Attacks: Heap Overflows

 Overflowing metadata is useful

– Various control structures can be targeted instead

– Requires some heap grooming (may or may not

be difficult depending on block size)

 Various heap attacking primitives can be

combined to gain code execution

Kernel Attacks: Heap Overflows

 Introducing vm_map_copy_t

Kernel Attacks: Heap Overflows

 Kernel buffers allocated by vm_map_copyin()

if size < 4096

 Creating them is easy

– Send messages to a mach port with

ool_descriptors in them

– They are persistent until the message is received

 Corrupting these structures are useful for

information leaking and exploitation

Kernel Attacks: Heap Overflows

 Primitive 1: Adjacent Disclosure

– Overwrite size parameter of vm_map_copy_t

– Receive the message corresponding to the map

– Returns memory past the end of your allocated

buffer

 Bonus: Overwritten size is not used in kfree()

– No side effects

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

 Primitive 2: Arbitrary Memory Disclosure

– Overwrite size and pointer of adjacent

vm_map_copy_t

– Receive message, read arbitrary memory from

kernel

 No side effects

– Data pointer (cpy_kdata) is never passed to

kfree() (the vm_map_copy_t is)

– Leave kalloc_size alone!

Kernel Attacks: Heap Overflows

 Primitive 3: Extended Overflow

– Overwrite kalloc_size with larger value

– Passed to kfree() – block entered in to wrong

zone (eg. kalloc.256 instead of kalloc.128)

– Allocate block from poisoned zone

– Profit

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

 Primitive 4: Find our own address + Overflow

– Mix and match primitive 1 and 3

– Overwrite one whole vm_map_copy_t, changing

kalloc_size to be suitably large

– Overflow in to adjacent vm_map_copy_t, partially

overwriting pointer / length

– Free second copy (revealing pointers to itself)

– Free first copy, creating poisoned kalloc block at

known location

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

Conclusion

 iOS 6 mitigations significantly raise the bar

– Many of the old tricks don’t work

– A variety of bugs likely to be (reliably)

unexploitable now

 Presented strategies provide useful

mechanisms for exploiting iOS 6

 Thanks!

